We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain. Ongoing grand-scale projects like the European Human Brain Project (1), the US Brain Initiative (2), the Human Connectome Project (3), the Chinese Brainnetome (4) and exciting world-wide neuroimaging collaborations such as ENIGMA (5) herald the new era of big neuroscience. In conjunction with these major undertakings, there is an emerging trend for bottom-up initiatives, starting with small-scale projects built upon existing collaborations and infrastructures. As described by Mainen et al. (6), these initiatives are centralized around self-organized groups of researchers working on the same challenges and sharing interests and specialized expertise. These projects could scale and open up to a larger audience and other disciplines over time, eventually lining up and merging their findings with other programs to make the bigger picture.
Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric redutions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.
Cognitive Reserve (CR) designates the brain’s capacity to actively cope with insults through a more efficient use of its resources/networks. It was proposed in order to explain the discrepancies between the observed cognitive ability and the expected capacity for an individual. Typical proxies of CR include education and Intelligence Quotient but none totally account for the variability of CR and no study has shown if the brain’s greater efficiency associated with CR can be measured. We used a validated model to estimate CR from the residual variance in memory and general executive functioning, accounting for both brain anatomical (i.e., gray matter and white matter signal abnormalities volume) and demographic variables (i.e., years of formal education and sex). Functional connectivity (FC) networks and topological properties were explored for associations with CR. Demographic characteristics, mainly accounted by years of formal education, were associated with higher FC, clustering, local efficiency and strength in parietal and occipital regions and greater network transitivity. Higher CR was associated with a greater FC, local efficiency and clustering of occipital regions, strength and centrality of the inferior temporal gyrus and higher global efficiency. Altogether, these findings suggest that education may facilitate the brain’s ability to form segregated functional groups, reinforcing the view that higher education level triggers more specialized use of neural processing. Additionally, this study demonstrated for the first time that CR is associated with more efficient processing of information in the human brain and reinforces the existence of a fine balance between segregation and integration.